Manchester Centre for Nonlinear Dynamics

The Manchester Centre for Nonlinear Dynamics is comprised of researchers from the Department of Mathematics and the Department of Physics and Astronomy at the University of Manchester. Research within the group is based upon the application of a combined approach of theoretical modelling, computation and detailed quantitative experimental investigations of nonlinear phenomena.

Granular jets and hydraulic jumps on an inclined planeMulti-component particle-size segregation in shallow granular avalanchesGravity-driven granular free-surface flow around a circular cylinderRaleigh-Taylor instability in a finite cylinderParticle-size segregation in dense granular avalanchesUnderlying asymmetry within particle size segregationSegregation induced finger formation in granular free-surface flows

Latest News: Work at the MCND on the curling of ribbons has been featured in a BBC News article. For more details see Anne Juel's site or our paper in PNAS.

Features

A symmetry breaking pattern switching phenomenon is observed in 2D granular media under compression. When the undeformed configuration on the left is compressed, rigid cylinders (white) form pairs, resulting from the buckling of columns of elastic cylinders (purple).

Granular shocks in shallow free-surface flows

Granular avalanches exhibit discontinuous shocks and bores with complex interaction dynamics.

Pattern-switching in elastic media.

A pattern switch induced by the compression of a two-dimensional elastic foam. A square array of holes is transformed into an array of ellipses with their major axes arranged in orthogonal directions.

Bubbles propagating through expansions and contractions:

Semi-infinite and finite bubbles, propagating through a fluid filled channel of varying geometries. These have applications in microfl'>Read more...

Bubble oscillation in a constricted tube.

The propagation of an air bubble into a constricted channel initially filled by a viscous fluid can lead to oscillations with a well defined spatial period. Read more...